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A B S T R A C T

Cyclist safety is affected by many factors on the zonal level. Previous studies have found associations between
cyclist-vehicle crashes and vehicle and bike exposures, network configuration, land use, road facility, and the
built environment. In addition, the network configuration, land use, and road facility were found to affect bike
exposure levels. The association of zonal characteristics with both exposure and crashes may bias the devel-
opment of macro-level bike safety models. This paper aims to explain these associations simultaneously using a
form of Structural Equation Modelling approach. The analysis assesses the mediated effects that some variables
have on crashes through their effects on bike exposure (by setting bike exposure as a mediator). Data from 134
traffic analysis zones (TAZ’s) in the City of Vancouver, Canada is used as a case study. The indirect effect of
network configuration, land use, and road facility on cyclist-vehicle crashes was assessed through Bayesian
mediation analysis. Mediation analysis is an approach used to estimate how one variable transmits its effects to
another variable through a certain mediator. These effects could be direct only, indirect only (through a certain
mediator), or both direct and indirect. The results showed that the bike kilometers travelled (BKT) was a
mediator of the relationship between network configuration, land use, and road facility and cyclist-vehicle
crashes. The mediation analysis showed that some variables have different direct and indirect effect on cyclist-
vehicle crashes. This indicates that while some variables may have negative direct association with crashes, their
total crash effect can be positive after accounting for their effect through exposure. For example, bike network
coverage and recreational density have negative direct association with cyclist-vehicle crashes, and positive
indirect association leading to positive total effect on cyclist-vehicle crashes.

1. Introduction

Cycling, as an active mode of transportation, has the potential to
reduce traffic congestion and emissions, as well as promote a healthier
lifestyle. Therefore, transportation agencies in many European and
North American cities are prioritizing the promotion of cycling.
However, cyclists are vulnerable road users who are usually subjected
to an elevated level of injury/fatality risk. This could discourage many
cyclists from using the bike network and raise the need for developing
safe and efficient bike networks that can attract more road users to
cycle. As such, developing safety models that can explain the re-
lationship of various factors on cyclist-vehicle crashes is of significant
importance.

Several previous studies have developed macro-level safety models
for use in the proactive safety evaluation of bike networks. These
models investigate the relationship between cyclist-vehicle crashes and

various network characteristics and exposure levels (Harris et al., 2011;
Chen et al., 2012; Teschke et al., 2012; Kaplan and Giacomo Prato,
2015). Exposure is a crucial variable in these models and was shown to
be one of the most important factors affecting crash occurrence. As
well, several studies have also shown strong associations between cy-
cling activity levels (exposure) and bike network characteristics (Nelson
and Allen, 1997; Dill and Carr, 2003; Parkin et al., 2008; Buehler and
Pucher, 2012). The association of bike network characteristics with
both exposure and crashes can cause exposure to be a potential med-
iator in cyclist-vehicle crash models leading to biased results. Mediation
occurs when: 1) a predictor of interest (e.g. network configuration) and
a mediator (exposure level) are associated with some outcome (cra-
shes); 2) the predictor of interest and the mediator are associated; 3) the
mediator is assumed a causal consequence of the predictor of interest
(the mediator is in the middle of the causal chain). Mediation analysis
yields three different effects on the dependent variable: direct, indirect,
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and total effects (Baron and Kenny, 1986). The direct effect is the part
of the independent variable effect on the dependent variable that is not
mediated by a given mediator. The indirect effect is the part of the
independent variable effect on the dependent variable that is mediated
by a given mediator. The total effect is the aggregate effect of the in-
dependent variable on the dependent variable. The interpretation of
these relationships is important in mediation studies (MacKinnon,
2012). Compared to conventional frequentist mediation analysis, the
Bayesian mediation analysis approach was shown to have several
benefits (Yuan and MacKinnon, 2009). First, it allows incorporation of
prior information into the mediation analysis process. Second, Bayesian
mediation analysis interpretation is straightforward. Third, the Baye-
sian approach is simpler for multilevel mediation analysis.

This paper applies Bayesian mediation analysis to assess the effects
that some variables have on cyclist-vehicle crashes accounting for their
effects on bike exposure (by setting bike exposure as a mediator). The
variables include network configuration, road facility, built environ-
ment, and land use. The full Bayesian models are developed using data
for 134 traffic analysis zones (TAZs) in the city of Vancouver, Canada.

2. Previous work

2.1. Network association with cycling levels

Considerable research has been undertaken to investigate the as-
sociation between bike network characteristics and cycling levels.
Nelson and Allen (1997), Dill and Carr (2003), and Buehler and Pucher
(2012) investigated the association between bike network length and
the number of bike commuters. Using a dataset of 50 cities, Dill and
Carr (2003) found that a 1% increase of bike commuting is associated
with each added square mile to the bike facility per square mile of the
city area. Buehler and Pucher (2012) associated a 3.1% increase in the
bike commuters with 10% increase in supply of bike lanes.

Winters et al. (2016) found correlation (r= 0.52) between devel-
oped bike score and bike commute trips. The used bike score is com-
prised of three environmental components: a bike lane score, a hill
score, and a destinations and connectivity score. Xing et al. (2010) used
data from an online survey conducted in 2006 in six small cities in the
western US to investigate factors affecting cycling for transportation
compared to cycling for recreation. The results indicated that in-
dividual, social-environment, and physical-environment factors have
considerable effect on commute and recreation cycling trips. Schoner
and Levinson (2014) used linear regression to measure the impact of
bike network quality on bicycle commuting after controlling for de-
mographic variables and the size of the city. They found that network
connectivity and directness are essential factors in predicting bicycle
commuting. Osama et al. (2017) used a Full Bayes (FB) approach that
incorporates spatial effects to investigate the association between bike
various network indicators and Bike Kilometers Traveled (BKT). They
found that bike network indicators, land use, and road facility are
significantly associated with BKT.

2.2. Cyclist safety models

Several studies have developed models for cyclist safety on the ag-
gregate (traffic zone) level. Wei and Lovegrove (2013) developed
macro-level crash models showing association between cyclist-vehicle
crashes and the total network length, bike network length, number of
bus stops, traffic signals, and intersection density, among others. Chen
(2015) explored the association between built environment factors and
cyclist safety. Chen (2015) also suggested that TAZ-based bicycle cra-
shes are spatially correlated. Zhang et al. (2012) developed geo-
graphically weighted regression model at the TAZ level to study the
impact of network connectivity on pedestrian and cyclist safety. They
found that pedestrian and cyclist crashes is negatively associated with
network connectivity. On the other hand, Siddiqui et al. (2012); Strauss

et al. (2013); Wei and Lovegrove (2013), and Osama and Sayed (2016)
found a positive association between intersection density (network
connectivity metric) and cyclist-vehicle crashes. For land use, com-
mercial land use was found to be positively associated with cyclist-ve-
hicle crashes (Narayanamoorthy et al., 2013; Vandenbulcke et al.,
2014) while Strauss et al. (2013) found that commercial land use was
not a significant predictor of cyclist-vehicle crashes. Osama and Sayed
conducted several studies to develop bike crash models using Full Bayes
(FB) approach that incorporate spatial effects. They considered zonal
characteristics, network configuration, and traffic exposure to develop
macro-level crash models, also they incorporated bike kilometers tra-
velled as a metric for the bike activity levels (Osama and Sayed, 2017a,
b).

2.3. Mediation analysis

Mediation analysis has been extensively employed in psychological
research (Baron and Kenny, 1986). It was also employed in a number of
transportation studies. Sümer (2003) proposed mediated a model to
distinguish the distal (i.e. personality factors) and proximal (i.e. aber-
rant driving behaviors) factors in predicting traffic crash involvement.
Gargoum and El-Basyouny (2016) used paths analysis to model the
relationship between road average speed and vehicle crash frequency.
Zhang et al. (2018) investigated a traffic climate scale relation to mo-
torists’ personality and dangerous driving behavior using mediation
analysis. Liu and Khattak (2017) developed a framework using path
analysis to explore the contributing factors to gate-violation behavior at
highway-rail grade crossings. Huang et al. (2018) used the large taxi
floating car data to evaluate how traffic congestion-related negative
moods influenced motorists’ speed choice, while evaluating the indirect
effect of traffic delay on the cruising speed adjustment using a media-
tion analysis approach.

There are a few studies that employed Bayesian mediation analysis,
mostly in social science. For example, Milfont and Sibley (2016) tested
a Bayesian path model to examine the extent to which empathy and
social dominance orientation predicted environmental values, and
calculated effects that mediated the gender difference. In medical re-
search, Detilleux et al. (2016) proposed a Bayesian path analysis fra-
mework to evaluate the direct and indirect relationships between bone
mineral density and vertebral fracture.

3. Data collection

3.1. Data sources

The models developed in this study are based on 134 Traffic
Analysis Zones (TAZ’s), at the city of Vancouver. The data used in this
study was extracted from several sources:

1 The Insurance Corporation of British Columbia (ICBC), a public
automobile insurance company, provided the crash data for a five
years period (2009–2013). Only cyclist-vehicle crashes are included
in the analysis of this study. A five years period is selected to collect
an adequate sample size. The sample included three severity levels,
i.e. fatality, injury, and property damage only.

2 TransLink, the Metro Vancouver transportation authority, provided
2013 geocoded files of the bike network, road network, land use,
and TAZ boundaries. In addition, TransLink provided the output of
Emme2 transportation-planning model for the travel demand in
Metro Vancouver in the year 2011. The 2011 household travel
survey was used to calibrate the Emme2 model, and the 2011
cordon counts were used to validate the model assignments.

3 Acuere Analytics provided the Vancouver Cycling Data Model
(VCDM). The VCDM uses bike counts for seven years from 2005 to
2011 to estimate the annual average daily bike traffic (AADB) in
2011 over the City of Vancouver bike network (El Esawey et al.,
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2015). The available data covered more than 810,000 hourly vo-
lumes over 7 years. The model was efficient in estimating the AADB
traffic on most links of the bike network (more than 70% of the
network).

4 The open data catalogue of the City of Vancouver, provided traffic
signals, bus stops, and contour map of the city of Vancouver.

3.2. Analysis variables

The response variable in the mediator model is the Bike kilometers
travelled (BKT), while cyclist-vehicle crash frequency is the dependent
variable of the crash models. Crashes are aggregated at the different
TAZs according to their locations. To account for cyclist-vehicle crash
exposure, Bike Kilometers Travelled and Vehicle Kilometers Travelled
are used representing the bike and vehicle exposures, respectively. Most
of the previous studies that developed macro-level bike crash models
used proxies for the cyclist exposure due to data limitations (bike net-
work length, etc.). Recently, actual cyclist exposure such as the BKT
(bike kilometers travelled) was used in developing the safety models
(Osama and Sayed, 2016, 2017b).

The bike network coverage is calculated as the ratio between the
number of bike links and the number street links at each TAZ (Osama
and Sayed, 2016). The bike network coverage was used to describe bike
network connectivity in previous studies (Yigitcanlar and Dur, 2010).
To measure bike network linearity, a hypothetical length (modified
bike network length) should be calculated that represent the length of
the bike network if all the links were straight, while maintaining the
nodes location the same. The bike network linearity was calculated as
the ratio between the modified bike network length and the original
bike network length in the TAZ (Osama and Sayed, 2016). Average
edge length is calculated as the ratio between the total length of the
zonal bike network and the number of links in the corresponding TAZ
(Kansky, 1963). For topography, the bike network slope is calculated.
The bike network slope of the zonal bike network is calculated as the
ratio between the total weighted slope and the length of bike network at
each TAZ. Arterial, collector, and local roads length aggregated at each
TAZ level as well as the arterial-collector roads proportion to the road
network was calculated. The built environment variables included the
signal density and bus stops density at each TAZ. Lastly, the land use
category included recreational density and commercial density at the
TAZ level. Socio-demographic variables (population density, and
number of households) were extracted from the EMME2 model for each
zone (Table 1).

As discussed in the previous work section, some of the above-
mentioned variables are correlated with bike exposure (Bike Kilometers
Travelled) and cyclist-vehicle crashes. For example, the bike network
coverage may be associated with increase in the bike exposure, as the
presence of bike lanes may encourage road users to have more cycling
trips. Similarly, recreational density may be positively associated with
BKT, since several studies showed that recreational density would
motivate road users to initiate more biking trips (Daley and Rissel,
2011). However, an increase in recreational density may be associated
with a decrease in the frequency of cyclist-vehicle crashes, since re-
creational areas usually provide off-street and continuous paths for
active transportation commuters reducing the conflict risk between
these vulnerable commuters and vehicles.

4. Method

4.1. Bayesian Mediation analysis

Bayesian path analysis using BKT as a mediator is employed to as-
sess the mediated effects that some variables (e.g. network configura-
tion, land use, and road facility) have on cyclist-vehicle crashes. The
path analysis has several advantages. First, multiple relationships can
be tested simultaneously, where some of these relationships can be

mediated. Second, the path analysis model estimates are easily inter-
preted. Third, it provides flexibility through defining the error term for
each model individually to suit the response behavior. Mediation ana-
lysis is used to estimate how a variable transmits its effects to another
variable through a certain mediator. These effects could be direct only,
indirect only (through a certain mediator), or both direct and indirect.
Fully mediated variables are variables with indirect effect only. There
are three main approaches to conduct statistical mediation analysis: (a)
causal steps, (b) difference in coefficients, and (c) product of coeffi-
cients (MacKinnon, 2012). The most widely used method to assess
mediation is the causal steps approach that is defined in many previous
studies (Baron and Kenny, 1986 and Judd and Kenny, 1981a, 1981b),
which is used in this study. Compared to conventional frequentist
mediation analysis, the Bayesian mediation analysis approach was
shown to have several benefits (Yuan and MacKinnon, 2009). First, it
allows incorporation of prior information into the mediation analysis
process. Second, Bayesian mediation analysis interpretation is
straightforward. Third, the Bayesian approach is simpler for multilevel
mediation analysis. Eq. (1) represents the effects of x (e.g. Network
configuration, land use, road facility) on m (BKT). Eq. (2) represents the
effect of m and x on y (cyclist-vehicle crashes). The indirect effect (τ) of
x on y can then be estimated by the product of coefficient estimator
(Yuan and MacKinnon, 2009; Hayes, 2013), as shown in Eq. (3).

= + +m x ui i i0 1 (1)

= + + + +y m x u si i i i i0 1 2 (2)

= ×1 1 (3)

Where ui and ui are the unstructured heterogeneity, while si is the
structured heterogeneity. A path diagram illustrating the assumed re-
lationship is presented in Fig. 1. The total effect is calculated by ag-
gregating the indirect and the direct effect. This study does not include
the impact of socio-economic and built environment variables on bike
exposure as they did not have a statistically significant impact on bike
exposure (bike kilometers travelled).

4.2. Model development

The full Bayesian analysis has the advantage of accounting for un-
certainty and a more flexible structure that can be modified to suit the
modeled process (El-Basyouny and Sayed, 2009; Sacchi and Sayed,
2015). More importantly, the full Bayes (FB) approach is more suitable
for spatial modelling because of its ability to accommodate complex
correlation structures (Aguero-Valverde and Jovanis, 2008).

The bike exposure (BKT) FB model was established with lognor-
mally distributed random error. The BKT distribution is right skewed
and therefore, the lognormal distribution error showed a good fit. A
simple technique to represent a lognormally distributed model is to
apply natural logarithm on the BKT. In this way the error term ui , can
be described as shown in Eq. (4). The model final form is shown in Eq.
(5).

u Normal˜ (0, )i u
2

(4)

= + +BKT b b X uln( )i m m mi i0 (5)

Where,
u
2 is the dispersion parameter, b0 is the intercept, m is the

number of variables, Xmi is the considered covariates, and bm is the
model parameters. Network configuration, land use, and road facility
variables were tested in a forward stepwise manner. Since, some of the
variables were highly correlated, to avoid collinearity, highly corre-
lated variables were not included in the same model.

For the crash models, Poisson lognormal models that account for
spatial effects are employed to handle the over-dispersion in count data,
and to account for both the unstructured and structured (spatially
correlated) heterogeneities. Spatial correlation might exist since
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neighboring zones typically have similar environmental and geographic
characteristics and thereby form a cluster that has similar crash oc-
currence (Mountain et al., 1998; Shankar et al., 1998). This form of
extra variation (structured heterogeneities) implies that there exists
spatial autocorrelation between spatial units (Traffic Analysis Zones).
The development of FB models in this study followed the procedure
described by El-Basyouny and Sayed (2009). Yi is assumed to be the
number of cyclist-vehicle crashes at zones, and it is assumed to follow a
Poisson distribution with a parameter i as shown in Eq. (6). i is
considered itself a random variable and modeled according to Eq. (7).

Y Poisson˜ ( )i i (6)

= + + + + +a a VKT a BKT d X u sln( ) ln( ) ln( )i o i i m m mi i i1 2 (7)

Where ao, a a, ,1 2 and dm are model parameters, VKTi is the vehicle
exposure variable, BKTi is the bike exposure variable, Xmi represents the

covariates, ui accounts for the unstructured heterogeneity among the
zones, and si accounts for the spatially correlated heterogeneity among
the zones. The followed statistical methodology to add explanatory
variables into a Crash model is a forward stepwise procedure, after
including variables representing exposure. The unstructured hetero-
geneity follows lognormal distribution, as implied from Eq. (7), and Eq.
(8). The spatial effect is structured by Gaussian Conditional Auto-
regressive Regressive (CAR) techniques and calculated by Eq. (9).

u Normal˜ (0, )i u
2

(8)

=S S Normal s
n

where s
s
n

| ˜ , ,i i i
s

i
i

j C i

j

i

¯ 2 ¯

( ) (9)

Where
u
2 is the unstructured heterogeneity variation, s

2 is the spatial
variation, ni is the number of neighbors of zone i, C i( ) is the set of

Table 1
Presents the set of variables included in the analysis. These variables were used in several previous studies (e.g., Osama and Sayed, 2016, 2017b).

Data summary statistics

Variable (Description) Mean Standard Deviation Minimum Maximum

Crashes
Cyclist-vehicle crashes 12.72 13.49 0.00 78.00
Exposure
Vehicle Kilometer Travelled (VKT) in thousands of kilometers 4.29 3.33 0.19 22.29
Bike Kilometer Travelled (BKT) in thousands of kilometers 1.05 2.11 0.00 21.46
Network Configuration
Bike network coverage 0.34 0.19 0.00 1.01
Bike network linearity 0.68 0.27 0.00 1.00
Average edge length 0.13 0.05 0.00 0.57
Bike network slope 2.53 0.90 0.64 6.66
Road Facility
Arterial-collector roads proportion (of all road links in the TAZ, by length) 0.35 0.21 0.12 1.00
Total road length (Arterial, Collector, and Local Roads Length aggregation) 11,382.56 7912.09 954.34 38484.37
Built Environment
Bus stops density

(number of bus stops/zone area in km2)
24.28 23.62 0.00 162.24

Signal density
(number of signals/zone area in km2)

0.92 1.13 0.00 7.16

Land use
Recreational density

(recreational areas/zone area)
0.10 0.13 0.00 0.91

Commercial density
(commercial areas/zone area)

0.08 0.11 0.00 0.58

Socio-Economic
Population density

(population/zone area in km2)
8391.82 6995.85 0.00 33658.90

Number of households 2058.95 1217.41 0.00 6163.00

Fig. 1. Proposed Path Model.
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neighbors of zone i, Si accounts for the spatially correlated (structured)
heterogeneity among zones, and S i is the set of all spatial effects ex-
cept Si. The spatial component Si suggests that zones that are closer to
each other are likely to have common features affecting their crash
occurrence. Fig. 2 shows the spatial structure considered in this study,
where 134 traffic analysis zones are allocated to 35 neighborhoods.
Each color represents a neighborhood, for example zones 1, 2, and 3 are
in a neighborhood. Spatial correlation is considered significant if the
spatial variation is found to be greater than 0.5 (Aguero-Valverde and
Jovanis, 2008). The spatial variation is assessed according to Eq. (10).
Inclusion of spatial effect term usually enhance the model goodness of
fit, however, sometimes it affects parameters level of significance. Al-
though the variables might be significant before adding the spatial
term, some parameters may lose their significance after the addition of
the spatial term (Karim et al., 2013).

=
+s

s

s u

2

2 2
(10)

Markov chain Monte Carlo (MCMC) is applied using WinBUGS tool to
sample the posterior distribution and estimate the FB model para-
meters. MCMC methods use sampling to generate sequences of random
points, the distribution of which converges to the target posterior dis-
tributions. A subsample is used for monitoring convergence, and then
excluded as a burn-in sample. Parameter estimation, performance
evaluation, and inference are obtained by the following iterations.
Obtaining FB estimates requires the specification of prior distributions
for the parameters reflecting the prior knowledge about the considered
parameters. The prior is either informative or non-informative (vague),
which depends on the availability of prior information. The most
commonly used prior is a diffuse prior that has normal distribution with
a zero mean and a large variance, which is considered vague prior (El-
Basyouny and Sayed, 2009). For the dispersion parameter,

u
2 and

u
2

gamma distribution is usually used as a prior with parameters ( , ),

where is a small number, e.g. 0.001 (Karim et al., 2013). Further-
more, for the spatial models developed in this study, the s

2 prior dis-
tribution is assumed to follow gamma distribution with parameters of
( + +l n1 /2, 1 /2i ), where li represent each zone contribution and is
calculated as in Eq. (11).

=l n s s s( )i i i i i
¯

(11)

WinBUGS software was used to sample the posterior distributions and
estimate the model parameters. A subsample with 20,000 iterations is
used to avoid out of order start up points, and then excluded as a burn
in sample. Two chains were used with different initial points, to be able
to check convergence. Convergence was checked by three methods.
First, the model is considered converged if Brooks-Gelman-Rubin sta-
tistics is less than 1.1 (Brooks and Gelman, 1998). Second, convergence
was checked by calculating the ratio between Monte Carlo errors and
the respective standard deviations. For each estimate, as a rule of
thumb, convergence occurs when the ratio is less than 0.05. Finally,
convergence was checked visually by inspecting the MCMC trace plots
of the model estimates. After reaching convergence, 20,000 iterations
were performed for the two chains to estimate the model parameters.
The Deviance Information Criteria (DIC) was used to judge the FB
model goodness of fit (Spiegelhalter et al., 2003). According to
Spiegelhalter et al. (2003), DIC differences between 5 and 10 are con-
sidered substantial, and differences higher than 10 might definitely rule
out the model with the higher DIC.

5. Results

5.1. Bike kilometers travelled model

Table 2 presents the results of the bike exposure models. Models 1
and 2 are developed to include several variables from the different
investigated categories. Model 1 and 2 show that bike network slope is
negatively associated with BKT since steep upgrade slopes may work as

Fig. 2. City of Vancouver Spatial Structure.

M.B. Kamel, et al. Accident Analysis and Prevention 131 (2019) 122–130

126



a deterrent to cyclists. This is consistent with previous studies (Dill and
Carr, 2003; Winters et al., 2016). Model 1 shows that bike network
coverage is positively associated with BKT, which is intuitive and
consistent with a previous study by Schoner and Levinson (2014), in
which they showed that connectivity is positively associated with bike
commuting rates. Model 1 shows that arterial-collector roads propor-
tion is found to have a negative association with BKT. This may be due
to that arterial and collector roads are usually perceived by cyclists as
less safe and less friendly (Marshall and Garrick, 2011). Model 2 shows
that recreational density is positively associated with BKT. This result is
plausible, as several studies showed that recreational density would
motivate commuters to initiate more cycling trips (e.g., Daley and
Rissel, 2011). Model 2 shows that commercial density is positively as-
sociated with the BKT level. This is likely due to commercial areas at-
tracting more cycling trips than residential areas, which is in agreement
with results from Daley and Rissel (2011). Model 2 shows that total
road length at each zone was found positively associated with BKT,
which is intuitive as it represents cyclists’ using the available road
network.

5.2. Impact on cyclist-vehicle crashes

Tables 3 and 4 show four crash models (models A, B, C, and D) that
were developed to capture the direct effect on cyclist-vehicle crash
frequency, where all the variables are statistically significant at the 95%
level unless otherwise mentioned. Spatial effects are significant in all
developed models (i.e. 0.5s ). This highlights the importance of ac-
counting for spatial autocorrelation in the macro-level crash models.
Both bike and vehicle exposures were found to be positively associated
with cyclist-vehicle crashes. The results are intuitive and consistent
with previous research (Miranda-Moreno et al., 2011; Strauss et al.,

2013; Hamann and Peek-Asa, 2013; Kaplan and Giacomo Prato, 2015).
The exposure estimate is less than one, which suggests a decrease in
cyclist-vehicle crash risk with increasing exposure and is consistent
with safety in numbers hypothesis (Jacobsen, 2003).

Table 5 shows the indirect effect on the cyclist-vehicle crashes. None
of the investigated variables was fully mediated through the BKT. A
summary of direct, indirect, and total effect on cyclist-vehicle crashes is
presented in Table 6. The Bike network slope Indirect effect is calcu-
lated from model 2 as it has higher statistical significance compared to
the same estimate from model 1.

Model D shows that the bike network slope has direct negative as-
sociation with cyclist-vehicle crashes. This association is consistent with
the previous research done by Chen (2015). This may be attributed to
cyclists reducing their speed at upgrades, which would lower cyclist-
vehicle crash risk. In addition, the bike network slope has indirect and
total negative association with cyclist-vehicle crashes. This implies that
an increase in the bike network slope is associated with decrease in bike
ridership and decrease in cyclist-vehicle crashes directly and indirectly.
Although the bike network coverage has negative direct association
with cyclist-vehicle crashes (as shown in Model B), its indirect positive
association outweighs its direct effect resulting in a positive total effect.
This might explain the difference in studies investigating the associa-
tion of network connectivity with cyclist-vehicle crashes (Siddiqui
et al., 2012; Strauss et al., 2013; Wei and Lovegrove, 2013; Zhang et al.,
2012). The network connectivity association sign may depend on the
quality of the bike exposure in the developed model. To illustrate, in-
cluding reliable bike exposure may result negative association between
network connectivity and cyclist-vehicle crashes, as the bike exposure
would be able to mediate the positive effect on crashes. The change in
the direction of the bike network coverage impact on cyclist-vehicle
crashes can be explained as the increase in bike network coverage is

Table 2
Bike kilometers travelled FB models.

Variable Model 1 Model 2

Estimate SD Credible Interval Estimate SD Credible Interval

2.50% 97.50% 2.50% 97.50%
Intercept −0.503 0.407 −1.297 0.312 −0.831 0.37 −1.572 −0.129
Bike network coverage 1.92 0.635 0.689 3.164
Bike network slope −0.202* 0.115 −0.43 0.022 −0.281 0.108 −0.492 −0.067
Arterial-collector roads proportion −0.945* 0.556 −2.034 0.139
Total road length 0.042 0.015 0.013 0.071
Recreational density 2.063 0.746 0.601 3.523
Commercial density 1.831* 1.009 −0.164 3.809
DIC 235.04 231.66

* Significantly different from zero at 10%, all other variables were significantly different from zero at 5%.

Table 3
Crash models A &B with spatial effects.

Variable Model A Model B

Estimate SD Credible Interval Estimate SD Credible Interval

2.50% 97.50% 2.50% 97.50%
Intercept 1.896 0.318 1.270 2.512 2.454 0.319 1.822 3.087
VKT 0.347 0.098 0.167 0.552 0.340 0.100 0.136 0.533
BKT 0.491 0.061 0.377 0.612 0.513 0.066 0.383 0.642
Bike network coverage −0.811* 0.420 −1.642 0.032
Bike network linearity 0.395* 0.190 −0.015 0.802
Average edge length −2.108* 1.042 −4.034 0.083 −3.613 1.434 −6.478 −0.7737
Arterial-collector roads proportion 0.905 0.446 0.020 1.805
Signal density 0.244 0.066 0.103 0.373
Recreational density −1.010* 0.501 −2.150 0.008
DIC 736.75 743.63
ψs 0.896 0.078 0.705 0.972 0.850 0.081 0.662 0.974

* Significantly different from zero at 10%, all other variables were significantly different from zero at 5%.
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associated with an increase in BKT and a decrease in the cyclist-vehicle
crashes. On the other hand, the increase of the BKT is associated with
an increase in the cyclist-vehicle crashes, and therefore, the increase in
the bike network coverage indirectly increases the cyclist-vehicle cra-
shes. The bike network coverage total effects reveal that the bike net-
work coverage impact on cyclist-vehicle crashes through the BKT (in-
direct effect) outweighs the bike network coverage impact on cyclist-
vehicle crashes (direct effect).

The bike network coverage direct impact on cyclist-vehicle crash
may be interpreted as the impact of the bike network coverage on cy-
clist-vehicle crash risk. Conversely, the bike network coverage total
effect may be interpreted as the total impact of the bike network cov-
erage on cyclist-vehicle crash frequency. Therefore, planners may use
the direct effect to measure the bike network coverage impact on

cyclist-vehicle crash risk to quantify the risk of each cyclist.
Additionally, planners may use the total effect to measure the bike
network coverage impact on the total number of cyclist-vehicle crashes
at each zone.

Model A shows that the increase in recreational density is directly as-
sociated with a decrease in the frequency of cyclist-vehicle crashes.
However, recreational density is indirectly positively associated with cyclist-
vehicle crashes through BKT. To illustrate, recreational density encourages
road users to cycle (that increase the BKT), simultaneously the increase in
recreational density provides off-street and continuous paths (that decrease
cyclist-vehicle crashes). Recreational density total effect on cyclist-vehicle
crashes was very small (0.002), which indicates that the recreational density
indirect effect (through BKT) nullifies its direct effect on crashes.

As shown in Model B, Arterial-collector roads proportion was found
to be directly positively associated with cyclist-vehicle crashes. This is
intuitive as arterial and collector roads usually have a higher speed, and
have more diverse road users, which would increase the cyclist-vehicle
crash risk. These results agree with previous studies conducted by Chen
(2015) and Siddiqui et al. (2012). Although, it has a negative indirect
effect on cyclist-vehicle crashes, its total effect on cyclist vehicle crashes
is positive. The commercial density showed positive association directly
(as shown in Model C) and indirectly with cyclist-vehicle crashes. The
association between the commercial density and cyclist-vehicle crashes
is consistent with previous studies (Narayanamoorthy et al., 2013 and
Vandenbulcke et al., 2014). This is likely attributed to the side street
commercial activities raise the potential risk of a cyclist going into
conflicts with motorized traffic.

The total road length has a positive direct and indirect association
with cyclist-vehicle crashes. Which is attributed to the fact that road
network length can be considered surrogate measure for traffic ex-
posure. The signal density is positively associated with cyclist-vehicle
crashes, as shown in Model A. More traffic signal implies higher like-
lihood of conflicts between different road users specifically between
cyclists and motorists. Similarly, the presence of bus stops indicates
more interaction between ground transit and cyclists. Model C reveal
positive associations between cyclist-vehicle crashes and the population
density as well as the number of households. The results are reasonable
since these variables can be considered surrogate measures for traffic
exposure, thereby explaining their positive associations with cyclist
crashes, which is consistent with previous studies by Siddiqui et al.
(2012) and Prato et al. (2016). The bike network linearity is positively
associated with cyclist-vehicle crashes as cyclists and motorists tend to
accelerate on the straight links, which would increase crash risk. Model
A shows that the average edge length is negatively associated with
cyclist-vehicle crashes, which agrees with a safety study done by
Quintero et al. (2013) on Metro Vancouver transit network.

Table 4
Crash models C &D with spatial effects.

Variable Model C Model D

Estimate SD Credible Interval Estimate SD Credible Interval

2.50% 97.50% 2.50% 97.50%
Intercept 1.251 0.245 0.767 1.739 1.358 1.378 0.932 2.004
VKT 0.275 0.113 0.059 0.502 0.344 0.353 0.117 0.518
BKT 0.500 0.063 0.379 0.625 0.504 0.164 0.369 0.636
Bike network slope −0.053* 0.085 −0.201 0.104
Total road length 0.028 0.013 0.001 0.054
Bus stop density 0.014 0.028 0.004 0.018
Commercial density 2.771 0.828 1.118 4.312
Population density 3.4*10−5 1.2*10−5 1.1*10−5 5.9*10−5

Number of households 2.1*10−4 0.8-10−4 1.1*10−4 3.3*10−4

DIC 741.70 739.97
ψs 0.855 0.086 0.657 0.971 0.882 0.081 0.687 0.972

* Significantly different from zero at 10%, all other variables were significantly different from zero at 5%.

Table 5
Indirect Effects on Cyclist-vehicle crashes through BKT.

Variable Estimate SD Credible Interval

2.50% 97.50%
Bike network coverage 0.985 0.355 0.338 1.729
Arterial-collector roads proportion −0.485* 0.296 −1.092 0.071
Bike network slope −0.142 0.057 −0.255 −0.029
Recreational density 1.012 0.397 0.292 1.853
Commercial density 0.916* 0.522 −0.064 1.994
Total road length 0.021 0.008 0.006 0.037

* Significantly different from zero at 10%, all other variables were sig-
nificantly different from zero at 5%.

Table 6
A summary of direct, indirect, and total effect on cyclist-vehicle crashes.

Variable Direct Indirect Total effect

Bike network coverage −0.811 0.985 0.174
Arterial-collector roads proportion 0.905 −0.485 0.420
Bike network slope −0.053 −0.142 −0.195
Recreational density −1.010 1.012 0.002
Commercial density 2.771 0.916 3.687
Total road length 0.028 0.021 0.049
Bike network linearity 0.395* 0.000 0.395*

Average edge length −2.108* 0.000 −2.108*

Signal density 0.244 0.000 0.244
Total road length 0.028 0.000 0.028
Bus stop density 0.014 0.000 0.014
Population density 3.4*10−5 0.000 3.4*10−5

Number of households 2.1*10−4 0.000 2.1*10−4

* Significantly different from zero at 10%, all other variables were sig-
nificantly different from zero at 5%.
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5.3. Summary and conclusions

Bayesian mediation analysis is employed to assess the mediated
effects that some variables (network configuration, land use, and road
facility) have on crash through their effects on bike exposure (by setting
BKT as a mediator). Mediation occurs when: 1) a predictor of interest
(e.g. network configuration) and a mediator (exposure level) are asso-
ciated with some outcome (crashes); 2) the predictor of interest and the
mediator are associated; 3) the mediator is assumed a causal con-
sequence of the predictor of interest (the mediator is in the middle of
the causal chain). The mediation effects could be direct, indirect
(through a certain mediator), or both direct and indirect.

Bike kilometers travelled full Bayesian models showed that bike
network slope and arterial-collector roads proportion were negatively
associated with BKT, while the bike network coverage, road network
length, recreational density, and commercial density were positively
associated with the BKT level. Crash models were developed using full
Bayesian techniques incorporating spatial effects. The crash models
showed that all the variables in BKT models have significant direct
effect on cyclist –vehicle crashes. The results showed that cyclist-ve-
hicle crashes is negatively associated with average edge length, bike
network coverage, the bike network slope, and recreational density,
while signal density, bus stops density, population density, the number
of households, bike network linearity, arterial-collector roads propor-
tion, road network length, and commercial density have positive asso-
ciation with cyclist-vehicle crashes.

The importance of this study is that it differentiates between the
direct and indirect effects (through exposure) of zonal characteristics on
cyclist-vehicle crashes. The mediation analysis showed that some
variables have different direct and indirect effects on cyclist-vehicle
crashes. This indicates that while some variables may have negative
direct association with crashes, their total effect on crashes can be
positive after accounting for their effect through exposure. For example,
the bike network coverage and recreational density have negative di-
rect association with cyclist-vehicle crashes, and positive indirect as-
sociation leading to positive total effect on cyclist-vehicle crashes.
Furthermore, the Bayesian mediation results showed that the bike
network slope has direct and indirect negative associations with cyclist-
vehicle crashes. The commercial density and total road length showed
positive direct and indirect associations with cyclist-vehicle crashes.
Arterial-collector roads proportion was found to be directly positively
associated with cyclist-vehicle crashes. Although, it has a negative in-
direct effect on cyclist-vehicle crashes through BKT, its total effect is
positively associated with the cyclist-vehicle crashes.

This study has several limitations. Out-of-sample data is needed to
validate the developed models. In addition, data from other North
American or European cities could be used to test the developed model
transferability and to validate the conclusions of this paper. Additional
variables can be integrated in the bike kilometers travelled model to
investigate further associations with BKT, including built environment
variables (e.g. light poles), socio-demographic variables (e.g. employ-
ment density), additional facility characteristics (e.g. on-street parking,
surface type, etc.), and additional bike network indicators (e.g. cen-
trality, assortativity, etc.). As, this study did not consider potential
mediating effects through vehicle exposure, future research should ac-
count for the mediating effects of vehicle exposure and bike exposure
by simultaneously considering vehicle kilometers travelled and bike
kilometers travelled as mediators. Finally, it should be noted that this
study included only cyclist-vehicle interaction and ignored cyclist in-
teraction with other road users, due to data limitation.
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